homotopy type - definitie. Wat is homotopy type
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is homotopy type - definitie

CONTINUOUS DEFORMATION BETWEEN TWO CONTINUOUS MAPS
Homotopic; Homotopy equivalent; Homotopy equivalence; Homotopy invariant; Homotopy class; Null-homotopic; Homotopy type; Nullhomotopic; Homotopy invariance; Homotopy of maps; Homotopically equivalent; Homotopic maps; Homotopy of paths; Homotopical; Homotopy classes; Null-homotopy; Null homotopy; Nullhomotopic map; Null homotopic; Relative homotopy; Homotopy retract; Continuous deformation; Relative homotopy class; Homotopy-equivalent; Homotopy extension and lifting property; Isotopy (topology); Homotopies
  • paths]] shown above are homotopic relative to their endpoints. The animation represents one possible homotopy.
  • isotopy]].

Étale homotopy type         
ANALOGUE OF HOMOTOPY TYPE FOR ALGEBRAIC VARIETIES
Étale homotopy group; Étale homotopy theory; Etale homotopy type; Étale homotopy
In mathematics, especially in algebraic geometry, the étale homotopy type is an analogue of the homotopy type of topological spaces for algebraic varieties.
Homotopy         
In topology, a branch of mathematics, two continuous functions from one topological space to another are called homotopic (from "same, similar" and "place") if one can be "continuously deformed" into the other, such a deformation being called a homotopy (, ; , ) between the two functions. A notable use of homotopy is the definition of homotopy groups and cohomotopy groups, important invariants in algebraic topology.
Type (biology)         
  • Linnaeus]], is the type species for the genus ''[[Bufo]]''
  • dorsal]] and 2) ventral aspect of holotype,<br>3) dorsal and 4) ventral aspect of paratype
  • Type illustration of ''[[Mormopterus acetabulosus]]''
ANCHORING POINT (OF A NAME) IN TAXONOMY
Type specimen; Neotype; Biological types; Lectotype; Type (botany); Type (zoology); Botanical type; Clonotype; Type locality (biology); Type material; Paralectotype; Typus; Onomatophore; Cotype; Biological type; Hapantotype; Type specimens; Types in zoology; Type location (biology); Type illustration; Locality (biology); Type-specimen; Orthotype; Isoneotype; Plastotype; Isolectotype; Iconotype; Type series; Neotypification; Lectotypification; Ergatotype; Lectotype specimen; Type host; Typetaxon; Type (taxonomy); Series of type specimens; Hypotype
In biology, a type is a particular [(or in some cases a group of specimens) of an organism] to which the [[scientific name of that organism is formally attached. In other words, a type is an example that serves to anchor or centralize the defining features of that particular taxon.

Wikipedia

Homotopy

In topology, a branch of mathematics, two continuous functions from one topological space to another are called homotopic (from Ancient Greek: ὁμός homós "same, similar" and τόπος tópos "place") if one can be "continuously deformed" into the other, such a deformation being called a homotopy (, hə-MO-tə-pee; , HOH-moh-toh-pee) between the two functions. A notable use of homotopy is the definition of homotopy groups and cohomotopy groups, important invariants in algebraic topology.

In practice, there are technical difficulties in using homotopies with certain spaces. Algebraic topologists work with compactly generated spaces, CW complexes, or spectra.